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stress. It is easy, however, to write down the 
nonhydrostatic Pippard relations for arbitrary 
axes by the method of Buckingham and Fair
bank [1961], as set out in Appendix B. These 
lead to the following asymptotic relations: 

as T --7 Tx 

as T --7 Tx 

(7) 

(8) 

where - Mkl is the slope of the phase boundary 
in the CTkI - T plane (aT ... / aCTkl).>,nu the sign 
of CTkl following from the usual convention that 
tensional stress is positive. 

Garland, also using the thermal expansion and 
compliance measurements of Mayer [1960] , 
found that (8) yielded a best average M, ~ 
10°C/ kb and, less convincingly, M. ~ 6°C/ kb 
approximately 5°C/ kb is obtained if the data 
nearest to the transition are retained). The dif
ference between these estimates and our direct 
measurements of MI = 10.6°C/ leb and M3 = 
5.0°C/ kb may not be significant because of the 
differences in experimental material and the 
difficulty in matching the absolute temperatures 
accurately enough near the transition for the 
thermal expansion and compliance measure
ments. Another problem is that the conversion 
from the adiabatic compliances of Mayer to 
isothermal values involves the specific heat, 
which requires data from another investigator 
on yet a different specimen of quartz. Near the 
transition the difference between adiabatic and 
isothermal compliances becomes significant, so 
that compatibility of the data is a crucial re
quirement in evaluating the asymptotic limits. 
That the specific heat data of Mosel' [1936] 
and the thermal expansion data of M aye/" 
[1960] are not compatible is shown by the fact 
that consistent values of M

" 
M s, and dT,jdP 

are not obtained in (7) [Garland, 1964] and 
(5) [Hughes and Lawson, 1962J, respectively. 

Both Garland's and our own values of MI 
and M3 satisfy the constraint (4b) within experi
mental error. Garland showed, however, that if 
C./ T is eliminated from (7) another important 
constraint on the values of M, and M. is ob
tained asymptotically from al and a. (Blla, 
Appendix B): 

(9) 

The evaluation of this limit appears to be free 
of many of the difficulties discussed above, be-

cause the independent measurements of Mayer 
[1960], Coenen [1963], and Berger et al. [1966J 
on different specimens of quartz all convincingly 
agree that aJa. = 1.68 ± 0.04 throughout the 
temperature range 100° to 570°C (Figure 8). 
Moreover, Coenen and Berger et al. used X-ray 
techniques in which al and a. are determined 
simultaneously over the same portion of quartz, 
thus eliminating possible errors in aI/ a . due to 
differences of material within the same specimen 
and inconsistences in temperature measurement. 
If this value of a,/ a. = 1.68 that holds between 
100° and 570°C is the true limit at the transi
tion (T ~ 574°C), then Garland's MJM. ~ 
10/ 6 ~ 1.7 is consistent with equation 9 and 
our value of MI/ M. = 2.1 ± 0.2 is not. 

There are similar sorts of asymptotic con
straints on M J M3 that are imposed by pairs 
of components of the isothermal compliance 
tensor Silk." as the boundary of a A. transition 
is approached (Bllb, Appendix B). Klement 
and Cohen [1968] showed that plotting the 
adiabatic compliance components for quartz one 
against the other should yield the same asymp
totic limits as with the isothermal compliances 
as long as the relation aJ a. = 1.68 held, which 
enables one to use the dynamic data directly 
without introducing the uncertainty of the 
specific heat by converting to isothermal values. 
Even so, however, a convincing estimate for 
M.,/M. is not obtainable from the asymptotic 
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Fig. 8. Linear thermal expansion coefficients of 
quartz parallel (as) and perpendicular (a,.) to the 
C axis. Numbers beside the points are tempera
tures in degrees C. From 20°C to 570°C the data 
fits a straight line through the origin: as = a,l 
1.68. Data are from Mayer [1960]. 
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behavior of the presently available dynamic 
compliance data. The linear asymptotes found 
by Klement and Cohen and others found by us 
agree a little better with a value' of M,IM3 of 
1.7 than 2.1, but the variation among the in
dividual estimates is large. What is worse, al
though the 'straight' portions of the graphs 
start 20° to 50°C below the transition, the 
value1l within 4° or 5°C of the phase boundary 
often depart significantly from these lines. 

A set of static determinations of su" and 
S33" through the transition were made by Perrier 
and de Mandrot [1923J in a series of careful 
experiments involving the bending of quartz 
beams. These yield an asymptotic estimate of 
M,IM. between 2.0 and 2.2 in (Bl1b) for the 
temperature interval from 545° to 574.5°C. 
Their static method has the virtue of producing 
isothermal values directly, but their compliances 

at temperatures near the transition are open to 
question because the inhomogeneous state of 
stress in the bent beams of quartz would cause 
the apparent compliance to exceed its true value. 
The overestimate would be greater for su" than 
for 8aa", resulting in an overestimate of M,I M3 
from(Bllb), but an approximate calculation 
shows that the magnitude of this increase 
would be less than 5% for all temperatures 
more than 3°C below the transition tempera
ture. Thus the discrepancy between the asymp
totic estimates of M,jM3 from dynamic and static 
compliances is not easy to explain away. Cady 
[1964J mentions small systematic differences 
between dynamically measured compliances of 
quartz corrected to isothermal values and stat
ically determined compliances (both at room 
temperature). Perhaps such differences are real 
and arise from a mechanism that becomes much 
more significant near the transition. 

Thus, considering the uncertainty of the ther
modynamic data near the transition, we might 
regard our experimental values of M, and M3 
as sufficiently consistent with the asymptotically 
estimated values of Garland [1964J to provide 
support for the hypothesis that the a-f3 inver
sion is a ,.\ transition, except for the fact that 
the ratio M,jM. = 1.7 predicted by the same 
hypothesis from the much more accurately 

known ratio of the thermal expansions is in 
significant conflict with our directly measured 
value of 2.1 ± 0.2. There are several possible 
ways this discrepancy might be explained: 

1. We might have overlooked a serious source 
of systematic error in our experiments. This 
seems unlikely because the errors in M, and M 3 
would have had to be positive and negative, 
respectively, in just such a way that the con
straint (4b) remained valid. 

2. The difference might be due to the effect 
of pressure, because our measurements centered 
around 3-kb confining pressure whereas the data 
used to evaluate the asymptotic limits in (9) 
were for 1 atm. This seems unlikely for the 
same reason that is given immediately above 
and also because direct calculation shows that 
the ratio a,l a. should not be very sensitive to 
pressure. That is, · 

as calculated from rates of change of the adia
batic compliances of Mayer [1960J at 1 atm 
and converted to isothermal values using a,l a. = 
1.68. 

3. The data might be too far from the transi
tion for the correct asymptotic limit to be de
fined. For example, equation 6 only begins to 
display the expected asymptotic behavior in 
liquid helium about 0.01 OK from the ,.\ transi
tion at 2.2°K [Buckingham and Fairbank, 
1961]. If, however, this is the root of the dis
crepancy, it means that the remarkably con
sistent linear relation a,ja3 = 1.68, which holds 
from 100° to 570°C, must cease to be valid 
somewhere between 570° and 574°C and a 
limiting value of 2.1 must be approached. 

4. The asymptotic behavior on approaching 
the transition might vary from crystal to crys
tal. This is supported by the variability of the 
DTA signals reported by Keith and Tuttle 
[1952J and by the variability of the rate of 
increase of Dauphine twins observed by Young 
[1962, 1964J, but it is contradicted by the 
consensus of several independent studies that 
a,ja3 = 1.68 and by the relatively good agree
ment among the experimental determinations of 
dT._pldP. If the Dauphine twinning reaches a 
maximum before the a-f3 transition proper, it is 
possible that the asymptotically derived values 


